
Software License Agreement

 SFN Font Library for .NET Core
 OS Independent Font Library

version 1

2024

ALL RIGHTS RESERVED BY

SUB SYSTEMS, INC.

3200 Maysilee Street

Austin, TX 78728

512-733-2525

Software License Agreement

The Software is protected by copyright laws and international copyright treaties,
as well as other intellectual property laws and treaties. The Software is licensed,
not sold. This LICENSE AGREEMENT grants you the following rights:

A. This product is licensed per developer basis only. Each developer working
with this package needs to purchase a separate license.

B. The purchaser has the right to link the DLL functions into their application. The
following restriction apply on its usage: the target application may not be a
stand-alone font library; the target application may use this product for one
operating system platform only; and the source code (or part) of the library may
not be distributed in any form.

C. The SERVER LICENSE allows for the server application development. The
server licenses must be purchased separately when using this product in a
server application. Additionally, the product is licensed per developer basis. Only
an UNLIMITED SERVER LICENSE allows for royalty-free distribution of your
server applications using this product.

D. ENTERPRISE LICENSE: The large corporations with revenue more than $50
million and large government entities must purchase an Enterprise License. An
Enterprise license is also applicable if any target customer of your product using
the Software have revenue more than $500 million. Please contact us at
info@subsystems.com for a quote for an Enterprise License.

E. Your license rights under this LICENSE AGREEMENT are non-exclusive. All
rights not expressly granted herein are reserved by Licensor.

F. You may not sell, transfer or convey the software license to any third party
without Licensor's prior express written consent.

G. The license remains valid for 12 months after the issue date. The subsequent
year license renewal cost is discounted by 20 percent from the license acquisition
cost. The license includes standard technical support, patches and new
releases.

H. You may not disable, deactivate or remove any license enforcement
mechanism used by the software.

This software is designed keeping the safety and the reliability concerns as the
main considerations. Every effort has been made to make the product reliable
and error free. However, Sub Systems, Inc. makes no warranties against any
damage, direct or indirect, resulting from the use of the software or the manual
and can not be held responsible for the same. The product is provided 'as is'
without warranty of any kind, either expressed or implied, including but not limited
to the implied warranties of suitability for a particular purpose. The buyer
assumes the entire risk of any damage caused by this software. In no event shall
Sub Systems, Inc. be liable for damage of any kind, loss of data, loss of profits,
interruption of business or other financial losses arising directly or indirectly from
the use of this product. Any liability of Sub Systems will be exclusively limited to
refund of purchase price.

Sub Systems, Inc. offers a 30 day money back guarantee with the product. Must
call for an RMA number before returning the product.

Getting Started
This chapter describes the contents of the software distribution ZIP file, and provides a
step by step process of incorporating the font library into your application. To begin:

1. Add the reference for sfn.dll in your project.

Create a project reference for the included product package. The package name is found
as sfn.1.n.n.n.nupkg. The 'n.n.n' stands for the product minor release number. This is
how your project file would apear:

 <PackageReference Include="sfn" Version="1.0.0.0"/>

Also, please ensure that:

2. Add the 'using' or 'Import' namespace statement for the project dll, example:

using SubSystems.SF

or

Import SubSystems.SF

In This Chapter

Files
License Key
Sample Conversion Code

Files

The distribution zip filee includes a nuget package called sfn.1.n.n.n.nupkg. The 'n.n.n'
stands for the product minor release number.

DLL Demo Files:

The following demo files are included in the c_demo.zip file.

demo.cs Source code for the demo program

demo.exe Executable demo program

demo.csproj The project file to compile the demo.

AssemblyInfo.cs Assembly information file

License Key

Your License Key and License number are e-mailed to you after your order is processed.
You would set the license information using the SfnSetLicenseInfo static function. This
should be preferably done before creating the Sfn object to avoid pop-up nag screens.

int SfnSetLicnseInfo(String LicenseKey, String LicenseNumber, String CompanyName);

LicenseKey: Your license key is available in the product delivery email sent to
you upon the purchase of the product. It consists of a string in the
form of "xxxxx-yyyyy-zzzzz".

LicenseNumber: Your license number is also available in the product delivery email.
The license number string starts with a "srab" or "smo" prefix.

CompanyName: Your company name as specified in your order.

Return Value: This method returns 0 when successful. A non-zero return value indicates
an error condition. Here are the possible return values:

0 License application successful.

1 Invalid License Key.

2 Invalid License Number.

3 Ran out of available licenses. Please consider purchasing additional licenses.

Example:

result=Sfn.SfnSetLicenseInfo("xxxxx-yyyyy-zzzzz","srabnnnnn-n","Your Company
Name")

Replace the 'xxxxx-yyyyy-zzzzz' by your license key, replace "srabnnnnn-n" with your
license number, and "Your Company Name" with your company name as specified in
your order.

Note: SfnSetLicenseInfo method should be called only once at the beginning of your
application. Calling this method for each conversion would degrade the conversion
performance.

Sample Code

Please follow these steps to get started:

1. Include the sfn.1.n.n.n.nupkg nuget package in your project. This is how your
project file entry would appear:

<PackageReference Include="sfn" Version="1.0.0.0"/>

This package is included in the distribution zip folder.

2. Call SfnSetLicenseInfo method to set your license information

Int LicenseCode=Sfn.SfnSetLicenseInfo("YourLicenseKey",
"YourLicenseNumber", "YourCompanyName");

if (LicenseCode!=0) {

 int LicenseStatusCode=Sfn.SfnGetLicenseStatus();

 String ErrText=Sfn.SfnLastMsgText + "license status

code: "+LicenseStatusCode.ToString();

3. Call one of these constructors to create the Sfn object:

Sfn sfn=new Sfn(""); // This message instructs the
library to use the stock truetype fonts included in the
DLL.

Sfm sfn=new Sfn(FontFolder); // This method allows to
specify the path to a folder that contains additional
truetype fonts which you would like to include for font
selection

4. Create a font request object and fill it with the parameters to create a font:

Sfn.ClsFontReq req=new Sfn.ClsFontReq();

req.typeface=”Arial”; // or another font typeface

int res=1440; // font resolution. In this example we
want to create a high resolution font at 1440 dpi.

int PointSize=12; // This example create a 12 point font

req.PointSize=(int)(PointSize*res/72); // Specify the
point-size in resolution unit

req.MustChar=(uint)0x680; // specify a character that must
be supported by this font. This parameter lets you
specify a unicode character block that this font must
support. Here we are specifying an Arabic character
0x680. For English, you would set MustChar to (uint)’A’.

req.CharSet=0; // This is windows character set value.
It is used only if the MustChar parameter is not specified

// The following three parameters lets you specify if you
want to create a bold, italic or strike font.

req.bold=false;

 req.italic=false;

req.strike=false;

int SfnId=sfn.SfnCreateFont(req); // create font id using
this font request object

5. Get text metrics for your text using this font id:

Sfn.ClsTextMetric mt=sfn.GetTextMetric(SfnId, text,
false); // set the third parameter to true to place the
text in the right-to-left direction.

The GetTextMetric method returns an object of the class
ClsTextMetrix. This object provides you with the
following information:

Please refer to the GetTextMetric method in the Control
Methods topic

Control Methods

In This Chapter
GetTextMetric
SfnCreateFont

GetTextMetric

Get text glyphs, width and text to glyph map

Sfn.ClsTextMetric mt=sfn.GetTextMetric(int SfnId, String text, bool direction);

SfnId Font id as returned from a previous call to the
SfnCreateFont method

text Text string to analyze

direction Set to true to specify a right-to-left text flow. Most
application will specify a false value to specify left-to-right
text flow.

Return value: This function when successful returns a text metric object. A false value
indicates an error condition.

Here is the information contained in the ClsTextMetric object:

mt.typeface Typeface used by the library for the specified text. This would
generally be the same as the typeface used to create the font id
(SfnId). However, the library can choose another font if the

characters in your specified text are not supported by SfnId.

mt.SfnCharSet Character set used by the library. The character set values are one
of the Windows character set and generally not relevant to cross
OS applications.

mt.FullName Full name of the typeface selected by the library.

mt.ascent Text ascent in the resolution used to create SfnId. The text ascent
specifies the distance from the baseline of the text to the top of the
character box.

mt.descent Text descent in the resolution used to create SfnId. The text
descent specifies the distance from the baseline of the text to the
bottom of the character box.

mt.height Text height in the resolution used to create SfnId. The text descent
specifies the distance from the top of the text to the bottom of the
character box.

mt.RawGlyph An array of raw glyphs generate for the text. The raw glyphs are the
glyphs before glyph substitution is applied on the glyphs.

mt.glyph An array of final glyphs generate for the text. The final glyphs are
obtained by applying context sensitive substitutions to raw glyphs.

mt.width An array containing the width of each glyph in the mt.glyph array.
The total width of the specified text is the sum of the widhts in this
array.

mt.order This array contains the glyph order of each character in the input
‘text’ string.

mt.rtl Text direction. It is set to true if the text contains right-to-left
placement characters.

SfnCreateFont

Create a font id using the font request parameters.

int SfnId=sfn.SfnCreateFont(ClsFontReq req);

Req: An object contaning font request parameters such
as typeface, point-size, etc.

Return value: This fuction returns a non-negative font id value. A return value of -2
indicates a license validation error. A return value of -1 indicates a general error.

Example:

Sfn.ClsFontReq req=new Sfn.ClsFontReq();

req.typeface=”Arial”; // or another font typeface

int res=1440; // font resolution. In this example
we want to create a high resolution font at 1440 dpi.

int PointSize=12; // This example create a 12 point
font

req.PointSize=(int)(PointSize*res/72); // Specify the
point-size in resolution unit

req.MustChar=(uint)0x680; // specify a character that
must be supported by this font. This parameter lets
you specify a unicode character block that this font
must support. Here we are specifing an Arabic
character 0x680. For English, you would set MustChar to
(uint)’A’.

req.CharSet=0; // This is windows character set value.
It is used only if the MustChar parameter is not
specified

// The following three parameters lets you specify if
you want to create a bold, italic or strike font.

req.bold=false;

 req.italic=false;

req.strike=false;

int SfnId=sfn.SfnCreateFont(req); // create font id
using this font request object

	Software License Agreement
	SFN Font Library for .NET Core
	OS Independent Font Library

	Getting Started
	Files
	License Key
	Sample Code
	Control Methods
	GetTextMetric
	SfnCreateFont

